1,045 research outputs found

    Pattern recognition on a quantum computer

    Get PDF
    By means of a simple example it is demonstrated that the task of finding and identifying certain patterns in an otherwise (macroscopically) unstructured picture (data set) can be accomplished efficiently by a quantum computer. Employing the powerful tool of the quantum Fourier transform the proposed quantum algorithm exhibits an exponential speed-up in comparison with its classical counterpart. The digital representation also results in a significantly higher accuracy than the method of optical filtering. PACS: 03.67.Lx, 03.67.-a, 42.30.Sy, 89.70.+c.Comment: 6 pages RevTeX, 1 figure, several correction

    Survival of near-critical branching Brownian motion

    Full text link
    Consider a system of particles performing branching Brownian motion with negative drift μ=2ϵ\mu = \sqrt{2 - \epsilon} and killed upon hitting zero. Initially there is one particle at x>0x>0. Kesten showed that the process survives with positive probability if and only if ϵ>0\epsilon>0. Here we are interested in the asymptotics as \eps\to 0 of the survival probability Qμ(x)Q_\mu(x). It is proved that if L=π/ϵL= \pi/\sqrt{\epsilon} then for all xRx \in \R, limϵ0Qμ(L+x)=θ(x)(0,1)\lim_{\epsilon \to 0} Q_\mu(L+x) = \theta(x) \in (0,1) exists and is a travelling wave solution of the Fisher-KPP equation. Furthermore, we obtain sharp asymptotics of the survival probability when x<Lx<L and LxL-x \to \infty. The proofs rely on probabilistic methods developed by the authors in a previous work. This completes earlier work by Harris, Harris and Kyprianou and confirms predictions made by Derrida and Simon, which were obtained using nonrigorous PDE methods

    Improved Bounds on Quantum Learning Algorithms

    Full text link
    In this article we give several new results on the complexity of algorithms that learn Boolean functions from quantum queries and quantum examples. Hunziker et al. conjectured that for any class C of Boolean functions, the number of quantum black-box queries which are required to exactly identify an unknown function from C is O(logCγ^C)O(\frac{\log |C|}{\sqrt{{\hat{\gamma}}^{C}}}), where γ^C\hat{\gamma}^{C} is a combinatorial parameter of the class C. We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that, for any class C, identifies any unknown function from C using O(logCloglogCγ^C)O(\frac{\log |C| \log \log |C|}{\sqrt{{\hat{\gamma}}^{C}}}) quantum black-box queries. We consider a range of natural problems intermediate between the exact learning problem (in which the learner must obtain all bits of information about the black-box function) and the usual problem of computing a predicate (in which the learner must obtain only one bit of information about the black-box function). We give positive and negative results on when the quantum and classical query complexities of these intermediate problems are polynomially related to each other. Finally, we improve the known lower bounds on the number of quantum examples (as opposed to quantum black-box queries) required for (ϵ,δ)(\epsilon,\delta)-PAC learning any concept class of Vapnik-Chervonenkis dimension d over the domain {0,1}n\{0,1\}^n from Ω(dn)\Omega(\frac{d}{n}) to Ω(1ϵlog1δ+d+dϵ)\Omega(\frac{1}{\epsilon}\log \frac{1}{\delta}+d+\frac{\sqrt{d}}{\epsilon}). This new lower bound comes closer to matching known upper bounds for classical PAC learning.Comment: Minor corrections. 18 pages. To appear in Quantum Information Processing. Requires: algorithm.sty, algorithmic.sty to buil

    Interaction-free generation of entanglement

    Full text link
    In this paper, we study how to generate entanglement by interaction-free measurement. Using Kwiat et al.'s interferometer, we construct a two-qubit quantum gate that changes a particle's trajectory according to the other particle's trajectory. We propose methods for generating the Bell state from an electron and a positron and from a pair of photons by this gate. We also show that using this gate, we can carry out the Bell measurement with the probability of 3/4 at the maximum and execute a controlled-NOT operation by the method proposed by Gottesman and Chuang with the probability of 9/16 at the maximum. We estimate the success probability for generating the Bell state by our procedure under imperfect interaction.Comment: 18 pages, Latex2e, 11 eps figures, v2: minor corrections and one reference added, v3: a minor correctio

    On the third critical field in Ginzburg-Landau theory

    Full text link
    Using recent results by the authors on the spectral asymptotics of the Neumann Laplacian with magnetic field, we give precise estimates on the critical field, HC3H_{C_3}, describing the appearance of superconductivity in superconductors of type II. Furthermore, we prove that the local and global definitions of this field coincide. Near HC3H_{C_3} only a small part, near the boundary points where the curvature is maximal, of the sample carries superconductivity. We give precise estimates on the size of this zone and decay estimates in both the normal (to the boundary) and parallel variables

    Continuity of the measure of the spectrum for quasiperiodic Schrodinger operators with rough potentials

    Full text link
    We study discrete quasiperiodic Schr\"odinger operators on \ell^2(\zee) with potentials defined by γ\gamma-H\"older functions. We prove a general statement that for γ>1/2\gamma >1/2 and under the condition of positive Lyapunov exponents, measure of the spectrum at irrational frequencies is the limit of measures of spectra of periodic approximants. An important ingredient in our analysis is a general result on uniformity of the upper Lyapunov exponent of strictly ergodic cocycles.Comment: 15 page

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct

    Relative Oscillation Theory, Weighted Zeros of the Wronskian, and the Spectral Shift Function

    Full text link
    We develop an analog of classical oscillation theory for Sturm-Liouville operators which, rather than measuring the spectrum of one single operator, measures the difference between the spectra of two different operators. This is done by replacing zeros of solutions of one operator by weighted zeros of Wronskians of solutions of two different operators. In particular, we show that a Sturm-type comparison theorem still holds in this situation and demonstrate how this can be used to investigate the finiteness of eigenvalues in essential spectral gaps. Furthermore, the connection with Krein's spectral shift function is established.Comment: 26 page

    Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites

    Full text link
    Studies on the new MgB2 superconductor, with a critical temperature Tc ~ 39 K, have evidenced its potential for applications although intense magnetic relaxation effects limit the critical current density, Jc, at high magnetic fields. This means that effective pinning centers must be added into the material microstructure, in order to halt dissipative flux movements. Concerning the basic microscopic mechanism to explain the superconductivity in MgB2, several experimental and theoretical works have pointed to the relevance of a phonon-mediated interaction, in the framework of the BCS theory. Questions have been raised about the relevant phonon modes, and the gap and Fermi surface anisotropies, in an effort to interpret spectroscopic and thermal data that give values between 2.4 and 4.5 for the gap energy ratio. Preliminary results on the anisotropy of Hc2 have shown a ratio, between the in-plane and perpendicular directions, around 1.7 for aligned MgB2 crystallites and 1.8 for epitaxial thin films. Here we show a study on the angular dependence of Hc2 pointing to a Fermi velocity anisotropy around 2.5. This anisotropy certainly implies the use of texturization techniques to optimize Jc in MgB2 wires and other polycrystalline components.Comment: 10 pages + 4 Figs.; Revised version accepted in Phys. Rev.

    Power-law distributions and Levy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements

    Full text link
    A generic model of stochastic autocatalytic dynamics with many degrees of freedom wiw_i i=1,...,Ni=1,...,N is studied using computer simulations. The time evolution of the wiw_i's combines a random multiplicative dynamics wi(t+1)=λwi(t)w_i(t+1) = \lambda w_i(t) at the individual level with a global coupling through a constraint which does not allow the wiw_i's to fall below a lower cutoff given by cwˉc \cdot \bar w, where wˉ\bar w is their momentary average and 0<c<10<c<1 is a constant. The dynamic variables wiw_i are found to exhibit a power-law distribution of the form p(w)w1αp(w) \sim w^{-1-\alpha}. The exponent α(c,N)\alpha (c,N) is quite insensitive to the distribution Π(λ)\Pi(\lambda) of the random factor λ\lambda, but it is non-universal, and increases monotonically as a function of cc. The "thermodynamic" limit, N goes to infty and the limit of decoupled free multiplicative random walks c goes to 0, do not commute: α(0,N)=0\alpha(0,N) = 0 for any finite NN while α(c,)1 \alpha(c,\infty) \ge 1 (which is the common range in empirical systems) for any positive cc. The time evolution of wˉ(t){\bar w (t)} exhibits intermittent fluctuations parametrized by a (truncated) L\'evy-stable distribution Lα(r)L_{\alpha}(r) with the same index α\alpha. This non-trivial relation between the distribution of the wiw_i's at a given time and the temporal fluctuations of their average is examined and its relevance to empirical systems is discussed.Comment: 7 pages, 4 figure
    corecore